

Get in sync: rhythm in speech entrainment as a mechanism for scripted sentence learning in aphasia.

Yina Quique^{1,2*}, **William S. Evans**^{1,2}, **Lauryn Zipse**³, **Michael Walsh Dickey**^{1,2} ¹Geriatric Research Education and Clinical Center, VA Healthcare System, Pittsburgh, PA, USA. ²Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA. ³Massachusetts General Hospital (MGH Institute), MA, USA.

Introduction

Spanish speakers with aphasia – an understudied population

450 million native Spanish speakers (~360 million English native speakers) 85% of published aphasia treatment research has focused on English^[12]

Script training

Well-established treatment for aphasia^[1-3] Mechanisms of action remain understudied

Speech entrainment

Unison production of speech^[4] Depends on detection and integration of rhythmic features^[5]

Highlighting rhythm during speech entrainment

Should facilitate scripted sentence learning by helping:

() **Lexical retrieval** – via alignment to beats highlighting word stress

Memorization via chunking – via alignment to metronomic beats^[7,8]

Aims

Adapt a script sentence learning protocol to Spanish.

Examine the effects of speech entrainment to rhythmicallyenhanced sentences compared to control sentences on scriptedsentence learning (rhythmic features as a mechanism of action).

Compare two types of rhythmic cues to test for differential contributions.

Stress-aligned condition \rightarrow Lexical retrieval

Metronomic beats condition \rightarrow Memorization via chunking

Methods

- 13 PWA from Colombia
 30 scripted sentences (presented twice in each session)
- 5 sessions over two weeks
- 3 conditions

Control Condition – Stress-aligned condition – Metronomic beat condition _

DV: post-session probes (sentence production in response to a related image)
 Mixed-effects logistic regression models.^[9,10] Condition coded with

glmer(cbind(successes,failures) ~ Condition * Session + (1 + Session | Subject) + (1 + Condition | Sentence) + (1 | obs)

orthogonal contrasts.

Results

The odds of producing a correct syllable were 1.5 times greater with each additional session (ß=0.41, SE=0.06, p<0.001)

As session increased, the difference between the rhythmic-enhanced and control conditions also increased (ß=0.12, SE=0.05, p=0.014).

2

As session increased, the difference between the metronomic and stressaligned conditions did not vary (ß=-0.01, SE=0.05, p=0.86).

Discussion

-Successful scripted sentence learning in Spanish speakers with aphasia.

-Further evidence for script training as an efficacious treatment for aphasia.

-Cross-linguistic benefits of scripttraining interventions. T.

-Rhythmic-enhanced conditions engendered greater scripted-sentence learning compared to the control condition.

-Rhythm, inherent to speech entrainment, is a key mechanism for scripted sentence learning^[4,5,11] - Learning in the two rhythmicenhanced conditions (stressaligned vs. metronomic) did not differ.

Funding

CAPCSD PhD Scholarship

ASHFoundation New Century Scholars Doctoral Scholarship.

School of Health and Rehabilitation Sciences Doctoral Student Award

Fulbright Colombia

LABIab and LRCLab

References

1. Goldberg, S., K.L. Haley, and A. Jacks, *Script Training and Generalization for People With Aphasia.* American Journal of Speech-Language Pathology, 2012. 21(3): p. 222-238.

2. Lee, J.B., R.C. Kaye, and L.R. Cherney, *Conversational script performance in adults with non-fluent aphasia: Treatment intensity and aphasia severity.* Aphasiology, 2009. 23(7-8): p. 885-897.

3. Cherney, L.R., A.S. Halper, and R.C. Kaye, *Computer-based script training for aphasia: Emerging themes from post-treatment interviews.* Journal of Communication Disorders, 2011. 44(4): p. 493-501.

4. Fridriksson, J., A. Basilakos, G. Hickok, L. Bonilha, and C. Rorden, *Speech entrainment compensates for Broca's area damage.* Cortex, 2015. 69: p. 68-75.

5. Phillips-Silver, J., A. Aktipis, and G. Bryant, *The Ecology of Entrainment: Foundations of Coordinated Rhythmic Movement.* Music Perception: An Interdisciplinary Journal, 2010. 28(1): p. 3-14.

6. Soto-Faraco, S., N. Sebastián-Gallés, and A. Cutler, *Segmental and Suprasegmental Mismatch in Lexical Access.* Journal of Memory and Language, 2001. 45(3): p. 412-432.

7. Stahl, B., S.A. Kotz, I. Henseler, R. Turner, and S. Geyer, *Rhythm in disguise: why singing may not hold the key to recovery from aphasia.* Brain, 2011. 134(10): p. 3083-3093.

8. Purnell-Webb, P. and C.P. Speelman, *Effects of Music on Memory for Text.* Perceptual and Motor Skills, 2008. 106(3): p. 927-957.

9. Breslow, N.E. and D.G. Clayton, *Approximate inference in generalized linear mixed models.* Journal of the American statistical Association, 1993. 88(421): p. 9-25.

10. Baayen, R.H., D.J. Davidson, and D.M. Bates, *Mixed-effects modeling with crossed random effects for subjects and items.* Journal of Memory and Language, 2008. 59(4): p. 390-412.

11. Fridriksson, J., H.I. Hubbard, S.G. Hudspeth, A.L. Holland, L. Bonilha, D. Fromm, and C. Rorden, *Speech entrainment enables patients with Broca's aphasia to produce fluent speech.* Brain, 2012. 135(Pt 12): p. 3815-3829.